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1 Introduction

Wireless sensor networks (WSNs) have been widely deployed in various applications,
aiming to provide valuable insights through real-time data collection, analysis, and
decision-making. Especially when employed in safety-critical scenarios, ensuring the
authenticity and authorization of data collected in a WSN is a major concern: Data
transmitted over the air can be easily forged, allowing a potential attacker to inject false
data and harm the overall system. Traditional approaches for authentication build on
cryptographic methods like encryption or signing of messages. For the hardware employed
in WSNs, which is commonly constrained in energy and computational power, those
tasks are quite demanding, and they usually lead to a certain transmission overhead.
More importantly, the distributed nature of such networks, the lack of a central unit
communicating with all devices and the often unidirectional nature of the communication
all lead to the cryptographic key distribution and management being a challenging
problem.

Radiometric fingerprinting is an alternative approach for authentication. It identifies
transmitter devices not based on cryptographic methods, but by capturing certain
characteristics of the received signal that stem from hardware imperfections of the
individual transmitter devices [1]. Thereby, this approach avoids both the key distribution
challenge and the transmission overhead.

In order to analyze its characteristics, the physical-layer signal needs to be captured in a
structure-preserving way (a process commonly referred to as I/Q sampling) and be made
available to a software stack. However, the commercial off-the-shelf (COTS) devices which
typically constitute a WSN make use of a hardware-accelerated receiver pipeline and
only present the decoded bit-level information to software, discarding the physical-layer
signal information. Up until now, the high cost of specialized hardware needed for I/Q
sampling has effectively hindered the deployment of radiometric fingerprinting systems
in a distributed architecture [2].

A different application which requires analysis of physical-layer signals is the direction
finding extension (DFE) added to the Bluetooth Low Energy (BLE) specification in
version 5.1 [3]. Within the last years, several new COTS device models with support for
BLE DFE have been presented. Depending on the system design, the signal analysis can
be performed as part of the receiver hardware or be delegated to software. The latter
case has the potential of enabling other applications based on the available I/Q sampling
information.
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ORF builds on this possibility and, for the first time, shows the feasibility of an on-board
radiometric fingerprinting system, deployed in its entirety on a COTS device. It leverages
the flexibility of the I/Q sampling functionality on an nRF52833 system on chip (SoC) and
extracts a radiometric fingerprint from a 480 µs long IEEE 802.15.4 transmission using a
typical coherent-receiver pipeline implemented in software. The extracted fingerprint is
finally attributed to a known device using an on-board Random Forest classifier.

The overall system reaches an average precision of more than 92% on a challenging
dataset with 32 devices of four different types, while occupying not more than 75 % of
the available memory. The classification of a single received frame takes roughly one
second and consumes about 12 mJ in terms of energy.

The remainder of this report is organized as follows: Section 2 introduces common
radiometric fingerprinting system architectures and concepts used in their implementation.
The system design of ORF is briefly summarized in Section 3, listing several challenges
arising from its on-board deployment. Section 4 goes into detail on the implementation
of the on-board radiometric fingerprinting system. The performance of ORF is evaluated
in Section 5 and final conclusions are drawn in Section 6.
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2 Background

This section first gives an overview of the three stages of a common radiometric fin-
gerprinting architecture and then provides relevant background information for the
implementation of these individual stages in ORF.

2.1 A Primer on Radiometric Fingerprinting

Device fingerprinting in general is used to increase the security in wireless networks
by complementing cryptographic approaches with information obtained from unique
transmitter characteristics. These characteristics can be extracted from the transmitter’s
behavior at several layers of the network stack. In general, the amount of transmitter-
specific information and the granularity of identification improves as lower layers are
considered: While medium access control (MAC) layer information can be used to
efficiently distinguish between devices of different types, the radiometric fingerprint
extracted at the physical layer (PHY) even allows for individual device identification
by capturing the peculiarities of the physical-layer signal caused by manufacturing
imperfections of the transmitter hardware [4].

I/Q Sampling Feature Extraction

Classification

raw I/Q samples

features

transmitter identity

distributed network

separate identification system

previous classifier training

Figure 2.1: Traditional radiometric fingerprinting system architecture. Specialized and
expensive hardware is used for I/Q sampling, feature extraction and device
identification.
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A typical fingerprinting system implementation acts in three stages upon reception of a
signal, as depicted in Figure 2.1 and detailed in the following three sections:

1. The signal is sampled with high resolution both in time and amplitude for subsequent
digital processing.

2. The acquired signal samples are processed in order to extract features which capture
the uniqueness of the transmitter device as well as possible.

3. Those features are used as input to a previously trained classifier which judges the
corresponding device identity.

Previous work has shown the effectiveness of radiometric fingerprinting techniques to
enhance the security of wireless networks [4], [5]. They have been implemented for a
variety of physical-layer (PHY) protocols, including IEEE 802.11 (Wi-Fi) [5]–[7], IEEE
802.15.4 (ZigBee, Thread) [8]–[11], LoRa [12], [13] and BLE [14].

Although the benefits of radiometric fingerprinting techniques are most apparent in
distributed networks of small COTS devices, the employed system architecture typically
relies on a single central receiver which is responsible for device identification [6], [8].
This discrepancy comes from the fact that I/Q samples are traditionally not available on
COTS devices, resulting in the need of costly specialized hardware.

2.2 Sampling Wireless Signals

2.2.1 Modulation of Radio Waves

A basic signal wave a(t) can be described by a sine with a certain amplitude A, frequency
f and phase φ as shown in Figure 2.2:

a(t) = A · sin(2πft− φ) (2.1)

The period T = 1
f of the wave is the reciprocal of the frequency and the wave length

λ is proportional to the period and the transmission velocity v in a given medium:
λ = T · v = v

f . Radio waves travel through air at approximately the speed of light, i.e.,
v ≈ c ≈ 3× 108 m/s.

In order to encode information in the signal a(t), its characteristics must change over
time in a specified way known to the transmitter and the receiver, depending on the
information to be transmitted. This process is called modulation. Any of the three com-
ponents frequency, amplitude and phase can change over time, resulting in, respectively,
frequency-shift keying (FSK), amplitude-shift keying (ASK), phase-shift keying (PSK);
or a combination thereof [15].

Signals generated in such a way are known as baseband signals. For wireless transmission,
they are usually modulated again using a so-called carrier wave to form a passband signal
s(t) with a fixed carrier frequency ftx, which is significantly higher than the baseband
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time t

−1.0

−0.5

0.0

0.5

1.0

T = 1
fφ

A

A · sin(2πft− φ)

Figure 2.2: Generic sine wave with amplitude A, frequency f and phase φ.

frequency f . Since the carrier frequency is fixed, there are still two parameters which are
allowed to change, namely the amplitude and phase of s(t).

According to the Harmonic Addition Theorem [16], a linear combination of a cosine and
a sine with the same (angular) frequency ω results in a single cosine wave with precisely
a scaled amplitude and phase shift:

I · cos(ωt)−Q · sin(ωt) = c · cos(ωt+ ϕ)

with
c = sgn(I) ·

√
I2 +Q2, ϕ = tan−1

(
Q

I

)
. (2.2)

If I and Q now change over time, the amplitude c and phase ϕ of the resulting cosine do
so as well.1

Therefore, actually two baseband signals can be used as I(t) and Q(t) and modulated
together to the carrier frequency at the same time:

s(t) = I(t) · cos(2πftxt)−Q(t) · sin(2πftxt) (2.3)

I(t) and Q(t) are commonly called the in-phase and quadrature component of s(t),
respectively. In a typical direct-conversion transmitter design, both carrier signals are
produced by a single local oscillator (LO) running at ftx. A delayed copy of the in-
phase carrier with phase difference 90° is used as the quadrature-phase carrier, since
cos

(
2πftxt+ π

2
)

= − sin(2πftxt).

At the receiver, the baseband signals are recovered by multiplying s(t) with the known
carriers at the approximate carrier frequency frx ≈ ftx and low-pass filtering the result:

1
2I(t) ≈ LPF{s(t) · cos(2πfrxt)},

1
2Q(t) ≈ LPF{s(t) · sin(2πfrxt)} (2.4)

1I · cos(ωt) and Q · sin(ωt) are idealized as being orthogonal to each other. This so-called narrowband
assumption only holds as long as I and Q change very slowly in relation to the carrier frequency.
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Figure 2.3 shows a simplified block diagram of the modulation and demodulation parts
of the two baseband signals I(t) and Q(t) as defined by Equations 2.3, 2.4.

0°

90°

ftx

I(t)

Q(t)

+ s(t)

0°

90°

frx

I(t)

Q(t)

s(t)

LPF

LPF

Figure 2.3: I/Q modulation and demodulation.

For further digital processing, the baseband signals are sampled at a given frequency of
at least 2f according to Nyquist, where f is the maximum frequency of the baseband
signals. This process is called in-phase and quadrature sampling or I/Q sampling for
short. Each I/Q sample Sk can be either represented in 2-D cartesian coordinates (Ik, Qk)
or as a phasor in polar coordinates consisting of amplitude ck and phase ϕk as given in
Equation 2.2, with Sk = ck · ei·ϕk . Being a point in a two-dimensional space, I/Q samples
are often conveniently represented as complex numbers, with the in-phase component
treated as the real part and the quadrature component as the imaginary one.

The information-carrying symbols for a given phase or amplitude modulation scheme can
be represented as ideal constellation points P in the I/Q plot. As an example, quadrature
phase-shift keying (QPSK) has four constellation points Pi ∈ {ei·

π
4 | i ∈ 1, . . . , 4} or,

equivalently, Pi =
(
±
√

2
2 ,±

√
2

2

)
after normalization to amplitude 1. The ensemble of

these points Pi is called constellation diagram and plotted for QPSK in Figure 2.4a.

−1.0 −0.5 0.0 0.5 1.0

I

−1.0

−0.5

0.0

0.5

1.0

Q

(a) QPSK constellation dia-
gram.

−1.0 −0.5 0.0 0.5 1.0

I

−1.0

−0.5

0.0

0.5

1.0

Q

(b) I/Q plot of oversampled
ideal QPSK signal.

−1.0 −0.5 0.0 0.5 1.0

I

−1.0

−0.5

0.0

0.5

1.0

Q

(c) I/Q plot of oversampled ideal
OQPSK signal.

Figure 2.4: Examples of I/Q plots.
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Since the baseband signal is sampled at a higher frequency than f , several of the obtained
samples are taken at times where the signal is changing between two constellation points.
The resulting I/Q plot for a QPSK signal resembles an X as simulated in Figure 2.4b
with 8x oversampling.

To avoid large amplitude fluctuations due to phase changes of as much as 180°, offset
quadrature phase-shift keying (OQPSK) is often preferred over QPSK in practice. In
OQPSK, one signal component is delayed by half a symbol period, effectively restricting
the phase shift to 90°. When sampling such a signal, the I/Q plot resembles a circle as
depicted in Figure 2.4c, since there is no immediate change between opposite constellation
points.

2.2.2 Effects of Hardware Imperfections and the Wireless Channel

At the transmitter, the passband signal s(t) is generated in such a way that the transmitted
I/Q symbols match the constellation points as closely as possible. However, hardware
imperfections manifest themselves in deviations of Sk from Pi in amplitude and phase;
as well as in a deviation of ftx from the desired carrier frequency. The former can be
explained by I/Q phase imbalance and I/Q offset while the latter is due to non-perfect
high-frequency oscillators.

I/Q imbalance stems from the fact that the two baseband signals I(t) and Q(t) are
processed in separate branches in hardware. As depicted in Figure 2.3 above, the two
orthogonal carrier waves are generated using a single oscillator and a 90° phase shift.
However, in the analog domain, the phase difference between the carriers is never exactly
90° [17], [18]. Since the same applies on the receiver side, the observed I/Q imbalance in
the received signal is a combination of the hardware effects of both the transmitter and
the receiver.

When the carrier waves additionally expose a DC bias, i.e., a non-zero mean amplitude,
the entire constellation diagram is shifted away from the zero origin, resulting in an
I/Q offset. Physical-layer standards usually define a combined maximum error tolerance
for the amplitude and phase deviations based on the error vector between Sk and Pi,
~Ek = Sk − Pi.

The carrier waves used for modulation or demodulation at the transmitter or receiver,
respectively, are generated in hardware by a local oscillator (LO) running at approximately
the frequency defined by the PHY protocol. However, in practice, two different oscillators
never coincide exactly in frequency due to hardware imperfections and other environmental
factors. There is thus in general a fixed carrier frequency offset (CFO) ftx − frx between
transmitter and receiver. Here as well, physical-layer standards usually account for these
imperfections and define a certain tolerance for the carrier frequency.

The amplitude, phase and frequency distortions observed at the receiver are however
not only a combination of fixed transmitter and receiver hardware imperfections, but
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also depend on effects of the often varying wireless channel. In particular, amplitude is
affected by distance, noise and multipath effects, frequency is affected by Doppler shifts in
case of relative movement between transmitter and receiver, and the exact sampling start
and interval at the receiver might result in further amplitude and phase deviations.

For successful radiometric fingerprinting, all of those propagation effects introduced by
the wireless channel must be compensated for during receiver synchronization, without
loosing the information of the actual hardware imperfections. To that end, ORF imple-
ments a typical coherent demodulation receiver pipeline which is described in detail in
Section 4.2.

2.2.3 Direction Finding as ORF Enabler

Previous work on radiometric fingerprinting relied on complex vector signal analyzer
(VSA) hardware as well as on extensive digital signal processing (DSP) and machine
learning (ML)-based classifier algorithms employed on the receiver’s side [6]–[12]. In
contrast, ORF employs an embedded system design running on a standard COTS device,
allowing radiometric identification to be integrated in a cheap way into existing systems.

In general, application-oriented systems using a given communication standard are only
interested in the decoded version of wirelessly transmitted data, which is why COTS
devices usually come with a hardware-accelerated receiver pipeline outputting at most
some reception metric such as RSSI in addition to the decoded payload of a frame. In
this case, the device software is incapable of getting access to the raw physical-layer
signal measurements which are the basis for radiometric fingerprinting techniques.

However, this has recently started to change with the implementation of the major new
feature of the Bluetooth® Core v5.1 specification on COTS devices: The direction finding
extension (DFE) designed to enhance location services employed over BLE relies on
phase-shift observations on the physical-layer signal received at two or more antennas.
For software-side implementation of this feature, devices with support for BLE DFE
must therefore provide access to raw I/Q samples.

The remainder of this section will explain the theory behind direction estimation based
on radio signals and introduce the BLE DFE based on [3], focusing on the parts that are
of interest for ORF.

2.2.3.1 Direction Finding Theory

A radio signal like the one described by Equation 2.1 travels outwards from a transmitter
antenna T at velocity v on a trajectory following the surface of an expanding sphere. The
signal reaches a receiver antenna R1 placed at a certain distance d1 from the transmitter
at time t1 = d1

v . If a second receiver antenna R2 is placed at a known distance dR from
R1, the same signal will be received at a potentially different time t2 = d2

v , depending
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on the distance d2 of R2 from T . The time difference ∆t = t2 − t1 is perceived as a
phase shift φ = 2πf∆t = 2π

λ (d1 − d2) of the signal received at R2 compared to the signal
received at R1.

If dR << d1, d2, the wavefront arriving at R1 and R2 can be approximated by a plane.
Further assuming that dR is not a multiple of the wavelength λ, the phase shift φ
can be used to deduce the signal direction as the angle ϕ by basic trigonometry as
ϕ = arccos

(
d1−d2
dR

)
= arccos

(
φ·λ

2πdR

)
.

R1 R2

d 1 
- d 2

 dR

radio signal

φ

Figure 2.5: The angle ϕ of a radio signal can be estimated using two antennas placed at
a known distance dR.

In practice, the signal is usually not sampled simultaneously at both antennas. Instead,
the receiver switches between the antennas and receives the signal at one of them at a
time. As long as the signal is periodic, the time difference translates to a constant phase
shift between the signals received at both antennas.

The same principle applies if two transmitter antennas located at a known distance dT
from each other take turns transmitting the same signal to a single receiver antenna.
As long as the receiver has knowledge about dT and which part of the received signal
is emitted by which transmitter antenna, the receiver can calculate the angle ϕ. These
setups can also be extended in a straightforward way to larger antenna arrays with more
than two antennas at the receiving or transmitting end to allow for a more accurate
direction estimation.

2.2.3.2 Bluetooth Direction Finding

Bluetooth Direction Finding defines both an angle of arrival (AoA) and an angle of
departure (AoD) mode, corresponding to deploying several antennas at the receiver or at
the transmitter, respectively. Consequently, in AoA mode, the receiver is supposed to
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switch between antennas, while this responsibility is taken by the transmitter in AoD
mode.

Since BLE uses FSK modulation, i.e., two different frequencies to transmit zeros and
ones, and since changing the frequency in turn changes the wavelength, which is a critical
factor in the direction calculation, the direction finding functionality in BLE is not
performed over the frame payload itself. Instead, it is implemented as an optional part
called constant tone extension (CTE) appended at the end of the frame. The CTE
contains only digital ones, resulting in a single frequency and wavelength of this part of
the transmitted signal.

The length of the CTE is configurable in units of 8 µs to be between 16 and 160 µs. It
consists of a 4 µs long guard period and a 8 µs long reference period, followed by the
switching period consisting of alternating switch and sample slots of either 1 or 2 µs each.
As the name implies, the switch slots give time for the receiver (in AoA mode) or the
transmitter (in AoD mode) to switch between different antennas, while I/Q sampling
is performed during the sample slots. When the CTE is present in a BLE frame, the
CTEInfo field in the BLE frame header is used to convey information about the length of
the CTE, the DFE mode (AoA or AoD) and the length of individual switch and sample
slots.

guard period
4μs

reference period
8μs

sw sa sw sa ... sw sa
switching period,  2 - 148μs

1
sw sa

1

guard period
4μs

reference period
8μs

sw sa ...
switching period,  4 - 148μs

2 2
sw sa
2 2

1 1 1 1 1 1
1μs slots

2μs slots

Figure 2.6: Two possible CTE formats depending on the slot length.

According to the specification, a receiver with support for BLE DFE must be able to
take one I/Q sample every microsecond during the reference period and one I/Q sample
per sample slot. This translates to a required sampling frequency of 1 MHz during the
reference period and 500 kHz (250 kHz for 2 µs slots) afterwards.

2.3 IEEE 802.15.4 Signals

ORF recognizes devices communicating according to the IEEE 802.15.4 specification,
which is a technical standard designed for low-rate wireless personal area networks (LR-
WPAN). 802.15.4 defines both the PHY and MAC layer for these networks [19] and is
the basis for many higher layer protocols which are commonly used in Internet of Things
(IoT) deployments. Examples are ZigBee, 6LoWPAN, Thread and SNAP.
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In order to motivate the coherent-receiver pipeline and the feature extraction implemen-
tation of ORF for IEEE 802.15.4-compliant physical-layer signals, this section briefly
summarizes the physical-layer aspects of this protocol.

2.3.1 Spreading and Modulation

The standard defines operation in different modes and frequency bands. ORF targets the
most commonly used direct sequence spread spectrum (DSSS) mode around 2.45 GHz
which employs OQPSK as its modulation technique.

At the sender, the binary data to be transmitted is first split to symbols of four bits each,
which are then individually mapped to one of 16 pre-defined 32-bit pseudo-random (PN)
chip sequences. Such a chip sequence is split in even- and odd-indexed chips that are in
turn modulated onto the in-phase (I) and quadrature-phase (Q) carrier, respectively. The
Q chips are however delayed by the chip interval Tc, resulting in OQPSK modulation.
The pulse shape for modulation is a half-sine defined by

p(t) = ±rect
(
t− Tc
2Tc

)
· sin

(
π
t

2Tc

)
. (2.5)

Chips representing ones are shaped using a positive amplitude and those representing
zeros with a negative amplitude.

Bit-to-Symbol Symbol-to-Chip OQPSKbinary data modulated signal

0b11110000
0b0000

0b1111
1101100111000011
0101001000101110

1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1

1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0

Figure 2.7: IEEE 802.15.4 modulation example for the symbol 0b0000.

The chip interval is defined as Tc = 0.5 µs, which corresponds to a chip rate of 2Mchips/s.
Since every 4-bit symbol is represented by 32 chips, this corresponds to a data rate of
250 kbit/s. One byte thus takes 32 microseconds to be transmitted.

2.3.2 Frame Format

A frame transmitted via the 802.15.4 physical layer conforms to the format illustrated in
Figure 2.8. It consists of the following basic components:

• a five-byte synchronization header (SHR) with fixed content, which allows a receiving
device to synchronize and lock onto the bit stream;

• a one-byte PHY header (PHR), which contains frame length information; and
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MAC CRCPHR PHY payloadSHR
5B 1B up to 127B

2B

32μs up to 4064μs160μs

Figure 2.8: IEEE 802.15.4 frame format.

• a variable length payload of at most 127 B, which usually carries the MAC sublayer
frame and commonly ends with a 2 B MAC cyclic redundancy check (CRC).

The longest possible frame thus takes (5+1+127)·8 bit
250 kbit/s = 4.256 ms to transmit.

2.4 The Classification Problem

In general, the goal of classification is to attribute an observation to one out of a finite
amount M of possible categories, or classes, C = {Ci | i ∈ 1, . . . ,M}. Usually, the
observation is first analyzed and quantified into features that try to capture the essence of
the observation in a lower-dimensional vector. The feature vector ~f is then used as input
to the classification algorithm, or classifier, c, which implements the function c(~f) ∈ C.

Since it is in general hard to define the decision boundaries for c manually, supervised
ML algorithms are widely used to define c based on some pre-classified (labeled) data [20]:
The classifier is trained on a training set Dtrain = {(~fi, Ci)} in such a way that for most
(~fi, Ci) ∈ Dtrain : c(~fi) = Ci holds. As long as the training set is a statistically accurate
representation of the real observations, c can be expected to generalize well.

Commonly, the performance of a given classifier c is quantified using a test set Dtest
with Dtest ∩Dtrain = ∅, i.e. with labeled data that is not used during training. There are
several metrics to evaluate the classification outcome. For this work, the simple statistical
metrics precision and recall are considered. These metrics can be easily explained
using the common concept of the confusion matrix CM of size M ×M representing
a summary of the classification outcome. In that matrix, the rows represent the true
classes, while the columns represent the predicted classes. Each entry CMij = |{~fi :
(~fi, Ci) ∈ Dtest ∧ c(~fi) = Cj}| corresponds to the number of samples of Dtest belonging
to the (true) class Ci and classified as the (predicted) class Cj . The confusion matrix
of an ideal classifier would be a diagonal matrix with CMij = 0, i 6= j, i.e., produce no
misclassification.

Precision is the fraction of correctly classified samples for a certain predicted class Cj .

precisionj = CMjj∑M
i=1CMij
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Conversely, recall is the fraction of correctly classified samples of a certain true class
Ci.

recalli = CMii∑M
j=1CMij

To assess the classifier performance over all classes, both the macro-average and the
worst-case value is reported for each of those metrics. The macro-average is a simple
arithmetical mean across classes. It gives equal weight to all classes making it a good
option for balanced classification tasks.

precisionmacro = 1
M

M∑
j=1

precisionj

recallmacro = 1
M

M∑
i=1

recalli

The worst-case is the minimum value of a metric across classes and thereby reports the
respective metric for the class where the classifier performed the worst.

precisionwc = min
j=1,...,M

precisionj

recallwc = min
i=1,...,M

recalli

Another metric which is often used for ML models in general is the accuracy. It
corresponds to the micro-average of both of the metrics precision or recall, which is
calculated as the fraction of correctly classified samples over the whole test set:

accuracy =
∑M
i=1CMii∑M

i=1
∑M
j=1CMij

Especially for imbalanced datasets, it is handy to consider the confusion matrix normalized
either by row or column. Instead of containing absolute numbers, it then reports the
fraction of samples with respect to true or predicted classes, respectively.

As an example, consider the three-class (M = 3) confusion matrix depicted in Figure 2.9.
The performance metrics for this confusion matrix would be calculated as:

precisionmacro = 1
3 ·
( 8

8 + 0 + 5 + 5
2 + 5 + 0 + 5

0 + 0 + 5

)
= 0.7766

precisionwc = 8
13 = 0.6154

recallmacro = 1
3 ·
( 8

8 + 2 + 0 + 5
0 + 5 + 0 + 5

5 + 0 + 5

)
= 0.7667

recallwc = 5
10 = 0.5000

accuracy = 8 + 5 + 5
8 + 2 + 5 + 5 + 5 = 0.7200
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Figure 2.9: Example of a confusion matrix. The right matrix is an alternative represen-
tation of the left one obtained by normalizing over rows (true values).
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3 System Design

The system design of ORF consists of a COTS device which performs I/Q sampling,
feature (fingerprint) extraction with the help of a coherent demodulation receiver pipeline,
and on-board classification using a simple ML model. The classifier model is trained off
board on previously extracted features. Figure 3.1 gives an overview of the implemented
system. In contrast to the typical architecture of previous systems depicted in Figure 2.1,
one or even several identification devices can be cheaply integrated into existing network
deployments.

I/Q Sampling

Feature Extraction

Classification

raw I/Q samples

features

transmitter identity

distributed network

onboard identification

previous classifier training

Figure 3.1: ORF system design. I/Q sampling, feature extraction and device identification
are performed on one of the COTS devices constituting the distributed
network.

3.1 Challenges

The goal of ORF is to showcase the feasibility of a complete radiometric fingerprinting
system deployed on a COTS embedded device. This is challenging because of several
restrictions imposed by such hardware:
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• Raw signal data availability and quality. Raw signal measurements are
available to the software stack in order to support Bluetooth DFE, which relies
on phase shift measurements between different antennas, detected during antenna
switching. According to the BLE specification, a receiver has to sample once every
2 or 4 µs (depending on the switch/sample slot size) of the optional CTE with a
length of 16 to 160 µs at the end of a BLE frame (cf. Section 2.2.3.2). The use-case
of radiometric fingerprinting however requires:

– Continuous sampling at a single antenna without antenna switching;
– A sampling rate of at least twice the data frequency (following Nyquist),

preferably a higher oversampling rate for better data quality;
– Sampling over a longer period, preferably a whole frame; and
– Sampling independently of the used physical-layer protocol.

Just the fact that a platform supports BLE DFE therefore does not automatically
imply that it will be suitable for an on-board radiometric fingerprinting system.
The first implementation stage (detailed in Section 4.1) investigates the quality of
the data obtained on the selected hardware platform.

• Memory constraints. Limited random-access memory (RAM) space restricts
the amount of data that can be kept and processed at once, again limiting the
oversampling rate and/or the part of a received frame that can be considered for
the fingerprint. It also affects the resources available during the feature extraction
process as described in Section 4.2. The available read-only memory (ROM)/flash
space in turn mainly limits the classifier model size, as detailed in Section 4.3.

• Time and energy cost. The fingerprinting classifier should work as close to
real-time as possible, to be able to classify frames as they are received. However,
the computational power of embedded devices is limited compared to the systems
used in previous work. At the same time, energy consumption has to be taken into
account, especially when employed on battery-powered devices. Being a prototype,
time and energy efficiency are not the main goals of ORF. Nevertheless, both
aspects are briefly evaluated in Section 5.5.

3.2 Hardware Platform

Nordic Semiconductor’s nRF52833 SoC [21] is chosen as the hardware platform for
ORF. It features a 2.4 GHz transceiver with support for BLE v5.1, 802.15.4-2006 as
well as two proprietary protocols and is built around a 64MHz Arm® Cortex®-M4F
with 512 kB of ROM and 128 kB of available RAM. As part of the nRF52 series, it is
code-compatible to older devices of the series which are widely used for research and in
commercial products.
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Being a proof of concept, ORF shows the general feasibility of on-board radiometric
fingerprinting. It is expected to be applicable to other COTS platforms too, as long as
they provide access to raw I/Q signal measurements in sufficient quality.
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4 Implementation

The implementation of ORF1 is realized in three different stages, corresponding to the
three parts of the typical radiometric fingerprinting system design depicted in Figure 3.1.
During the first stage, the feasibility of obtaining I/Q samples in sufficient resolution is
explored on the selected hardware platform and for the given physical-layer signals. The
second stage comprised the definition of features derived from the I/Q samples, as well
as an on-board implementation of the feature extraction pipeline. For the third stage,
a classifier is trained off board and employed on the hardware platform for on-board
radiometric-fingerprint classification. The three stages are described in detail in the
following three sections.

4.1 Stage 1: I/Q Sampling

The goal of stage 1 is to investigate the accessibility of I/Q samples and to judge their
suitability for radiometric fingerprinting on the selected SoC. This section elaborates
on the system parameters for I/Q sampling available on the nRF52833 SoC and on the
constraints imposed by the platform, thereby addressing the first set of challenges listed
in Section 3.1.

4.1.1 BLE DFE Parameters and Constraints

Bluetooth Direction Finding support on the nRF52833 is described in its Product
Specification [21, Sec. 6.8.12] and further detailed in a White Paper [22]. It is realized
by providing software access to samples of the raw incoming signal, in addition to the
decoded payload data of received frames. As all peripherals on this SoC, the radio is
controlled by memory-mapped configuration registers. This part will list the parameters
available for DFE which are configured in a certain way to address the challenges listed
in Section 3.1.

Continuous Sampling at Single Antenna. The SoC supports both the AoA and
AoD mode of Bluetooth DFE as explained in Section 2.2.3. Setting DFEMODE.DFEOPMODE
to AoD has the effect of disabling antenna switching at the receiver [21, Sec. 6.8.12.2].
Although the BLE standard only requires samples to be taken during the sample slots,
the nRF hardware implementation samples continuously throughout the switching period

1The source code is publicly available under MIT license at https://codeberg.org/ialokim/ORF.
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[22, Table 2]. However, the first I/Q sample after the reference period is always aligned
with the first sample slot, thereby skipping the preceding switch slot [22, Sec. 3.2]. This
is empirically confirmed and further investigated with a number of small experiments in
the next section.

Oversampling. The sampling rate depends on a combination of parameters.
DFECTRL1.TSAMPLESPACINGREF defines the sample interval during the reference period
of length 8 µs at the beginning of the CTE. If CTEINLINECONF.CTEINLINECTRLEN is
enabled, the sampling rate after the first 8 µs is adapted during frame reception according
to the information contained in the CTEInfo part of the BLE frame header. If disabled,
manual configuration is possible through setting DFECTRL1.TSAMPLESPACING [21, Sec.
6.8.12.7]. The smallest possible interval for both parameters is 125 ns which corresponds
to a sampling rate of 1

125 ns = 8 MHz.

Sampling Start. The start of the sampling operation is configurable through
DFECTRL1.DFEINEXTENSION either to right after the CRC (where the CTE is expected
for BLE frames), or to the ADDRESS event which is triggered at the beginning of the
frame payload [21, Sec. 6.8.12.4]. Additionally, an offset from the start trigger can be
configured through DFECTRL2.TSAMPLEOFFSET. To start sampling as soon as possible, it
is left at the default value of zero.

Sampling Duration. The sampling duration is upper-bounded by DFECTRL1.NUMBEROF8US
in multiples of 8 µs, while DFEPACKET.MAXCNT restricts the maximum amount of recorded
samples. Just by the amount of bits corresponding to each parameter in the configuration
registers, they cannot exceed certain values: The latter consists of 14 bit, theoretically
allowing for up to 214 − 1 = 16383 samples. The former consists of 6 bit, resulting in
the effective maximum sampling duration of (26 − 1) · 8 µs = 63 · 8 µs = 504 µs. Out of
those, the fixed 4 µs guard period is not used for sampling. At the selected sampling
rate of 8 MHz, 500 µs correspond to 8 MHz · 500 µs = 4000 samples, which is the actual
maximum amount of samples that can be recorded on this SoC.

Sample format and resolution. For later processing of the data, it is more beneficial
to record the samples as I/Q values, i.e., cartesian coordinates in the in-phase and
quadrature plane (refer to Section 2.2.1 for more information).

Table 4.1 summarizes the parameters of interest for ORF together with their chosen
values.

Table 4.1: Description of the I/Q sampling parameters available on the nRF52833 SoC,
with the values chosen for ORF.

Parameter Value Description
DFEMODE.DFEOPMODE AoD no antenna switching at receiver
CTEINLINECONF.CTEINLINECTRLEN Disabled manual configuration of sampling
DFECTRL1.SAMPLETYPE IQ save samples in I/Q format
DFECTRL1.DFEINEXTENSION Payload I/Q sampling after ADDRESS
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Parameter Value Description
DFECTRL1.TSAMPLESPACING 125 ns sampling rate 1

125 ns = 8 MHz
DFECTRL1.TSAMPLESPACINGREF 125 ns also sample first 8 µs at 8 MHz
DFECTRL1.NUMBEROF8US 63 63 · 8 µs = 504 µs
DFECTRL2.TSAMPLEOFFSET 0 no delay before sampling start
DFEPACKET.MAXCNT ≤ 4000 length of I/Q sample buffer

4.1.2 I/Q Sampling beyond BLE DFE

As mentioned in Section 3, the nRF52833 SoC supports more radio modes apart from
BLE, namely 802.15.4-2006 and two proprietary protocols offering different data rates.
All parameter names mentioned in the last part refer to the BLE terms DFE or CTE
and it is not specified whether they have any effect when operating in a different radio
mode.

During development of ORF, both the proprietary protocol operating at 2 Mbit/s and
the 802.15.4 radio mode have been investigated by setting the MODE [21, Sec. 6.8.15.51]
register accordingly. In both modes, it is possible to obtain raw I/Q samples during
frame reception. Examples of I/Q samples obtained for a single transmission of random
payload can be seen in Figure 4.1.
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Figure 4.1: I/Q plots of raw data obtained when sampling frames of different physical-
layer protocols.

Out of these two options, 802.15.4 is selected as physical-layer protocol for ORF because
it follows a known specification (which is not the case for the proprietary radio mode),
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it is widely used in research and industry, and it uses a simple I/Q-based modulation
with a single carrier. Additionally, previous research has shown the viability of radio-
metric fingerprinting based on 802.15.4-compliant signals [8]–[10]. However, with the
adequate adaptions to the receiver pipeline and feature extraction, on-board radiometric
fingerprinting is expected to be realizable with any of the other radio modes as well.

The manual I/Q sampling operation is not specified for any other radio mode than BLE.
After showing that I/Q sampling is generally possible, two questions remain open:

• Which part of the frame is captured in the I/Q samples? The frame
format differs for 802.15.4 mode operation from the BLE frame format. Notably,
the addressing fields are defined as part of the MAC layer [21, Sec. 6.18.13.1] and
are delayed by four octets compared to the address part of a BLE frame [21, Sec.
6.18.1]. The ADDRESS event, which is defined to trigger the I/Q sampling, is not
mentioned in the receive sequence diagram for 802.15.4 mode, and instead replaced
by the FRAMESTART event, which is triggered just after the PHR. On the other end,
it is not specified until when the I/Q sampling goes on with (MAC layer) CRC
enabled, only until the PAYLOAD event just before or until one of the events just
after the CRC part of the packet (END and CRCOK are defined for 802.15.4 operation,
while PHYEND is not).

• Is the frame continuously sampled throughout this part? As discussed
in the previous section, sampling is in general performed continuously on the
nRF hardware. However, for DFE operation, the I/Q sampling is defined to be
interrupted just after the reference period and for the duration of the first switch
slot. It is not specified whether this also applies while sampling over the packet
payload and if so, what size is assumed for the switch slot.

Both questions are empirically investigated by several timer-based experiments and by
inspecting the recorded samples: To that end, the programmable peripheral interconnect
(PPI) [21, Sec. 6.15] and one of the timer/counter peripherals [21, Sec. 6.28] offered
on the nRF52833 are used in conjunction to measure the time between different radio
peripheral events.

A frame with 14 B PHY payload is transmitted in 802.15.4 mode at a data rate of
250 kbit/s, corresponding to a transmission pace of 32 µs/B (cf. Section 2.3). The PHY
payload alone thus corresponds to 448 µs on-air transmission time, while the one-byte PHY
header corresponds to additional 32 µs. Given the sampling rate of 8 MHz, the expected
amount of samples can be deduced from this transmission time and is summarized in the
table below for reference. The actual amount of recorded I/Q samples can be read from
DFEPACKET.AMOUNT after each reception.

The timer is configured to count at 8MHz—matching the selected sampling rate—, from a
given radio event Estart to another event Estop. Estart is set to the ADDRESS or FRAMESTART
event, while Estop is tested to be one of PAYLOAD, CRCOK, END or PHYEND.

21



Table 4.2: Results of the timing experiments investigating the start and length of I/Q
sampling with respect to different radio events, when using the IEEE 802.15.4
PHY radio mode. The counter interval matches the sampling interval of 125 ns.

Actual amount of I/Q samples 3799± 1
Counter expected, PHY payload 3584
Counter expected, PHY header + payload 3840
Counter, Estart = FRAMESTART, Estop = PAYLOAD 3193± 1
Counter, Estart = ADDRESS, Estop = PAYLOAD 3449± 1
Counter, Estart = FRAMESTART, Estop = END 3583± 1
Counter, Estart = ADDRESS, Estop = END 3840± 1
Counter, Estart = ADDRESS, Estop = PHYEND 3840± 1
Counter, Estart = ADDRESS, Estop = CRCOK 3840± 1

The counter values reported in Table 4.2 lead to the following conclusions which are also
visualized in Figure 4.2:

• First of all, these counter-based experiments are valid, since the counter value
between the events defined for 802.15.4 (FRAMESTART and END) matches the expected
number for the PHY payload.

• The ADDRESS event (and thereby the I/Q sampling) is triggered at the start of
the 1 B PHY header field, which corresponds to the 32 µs difference from the
FRAMESTART event.

• The PAYLOAD event is triggered approximately 49 µs before the END event in 802.15.4
mode, which corresponds to roughly 1.5 B, a bit less than the 2 B 802.15.4 MAC
CRC field.

The amount of I/Q samples obtained roughly matches the counter values from ADDRESS
to one of END, PHYEND or CRCOK. This suggests that the I/Q sampling is started after the
synchronization header and includes the PHY header as well as the entire PHY payload
together with the CRC field. The actual amount of I/Q samples is still around 40 lower
than expected, corresponding to 5 µs. Out of these, 4 µs correspond to the fixed guard
period defined in BLE DFE.

The fact that one more microsecond worth of samples is missing suggests that a switch
slot duration of 1 µs is assumed, and that a time equivalent to the first switch slot is
skipped, even while sampling the payload. Figure 4.3a confirms that the in-phase and
quadrature component of the sampled signal indeed show a discontinuity exactly after
64 samples, i.e., after 8 µs which correspond to the reference period duration. Since
continuous samples are needed for the subsequent pipeline of ORF, the first 64 samples
are simply discarded from further processing.
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Figure 4.2: Estimated I/Q sampling duration with respect to the received IEEE 802.15.4
frame.
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Figure 4.3: In-phase (I) and quadrature (Q) component of start and end of a sampled
IEEE 802.15.4 frame.
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Additionally, a visual inspection of the end of the recorded signal in Figure 4.3b shows
that the modulated signal stops after approximately 3620 to 3660 samples, depending on
the transmitter device considered. The 140 to 180 missing samples correspond to 17.5 µs
to 22.5 µs or less than 1 B of a recorded frame. However, this suggests that sampling
does in fact not start exactly at the ADDRESS event, but at some point during the PHY
header field. Final conclusions on exactly which part of the frame is recorded cannot be
drawn at this point. The receiver synchronization implemented during stage 2 provides
more insights on this question.

4.2 Stage 2: Feature Extraction

Stage 2 of the implementation of ORF entails processing the raw I/Q samples obtained
in the previous stage, in order to extract transmitter-specific characteristics that can be
used as features for the later classification stage. This section first presents the features
selected for ORF and then provides a description of the implementation details to obtain
those features on board.

4.2.1 ORF Features

Radiometric fingerprinting features are commonly classified in two groups:
Synchronization-based features are obtained during receiver synchronization, while
constellation-based features are defined on the constellation diagram obtained after
successful receiver synchronization. Aligned with previous work, the carrier frequency
offset (CFO) is the only synchronization-based feature considered for ORF. Most of the
constellation-based features are inspired by previous work in [6], [8], [18], [23].

The following list gives a comprehensive overview of the features used for ORF, based on
the hardware imperfection effects explained in Section 2.2.2. The implementation details
are presented later in Section 4.2.9.

• Carrier Frequency Offset (CFO) is defined as the difference ftx − frx in
the frequencies used for modulation (ftx) and demodulation (frx). The carrier
frequency tolerance defined for IEEE 802.15.4 is ±40ppm [19, Sec. 6.9.4], which
for the 2450 MHz PHY protocol used in ORF translates to a frequency error per
device of at most 99 200 Hz. Consequently, the combined carrier frequency offset is
bound by |CFO| ≤ 2 · 99 200 Hz.

• I/Q Offset (IQO) refers to the center of the I/Q plot, which may not coincide
with the origin due to DC bias of the carrier waves.

• I/Q Skew (IQS) quantifies the I/Q phase imbalance as the difference in magnitude
between the constellation points in neighboring quadrants of the I/Q plot.
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• Constellation Cloud Shape (CCS) is a collection of features describing the
shape of the I/Q sample clouds in terms of their maximum phase and amplitude
spread.

• Error-Vector Magnitude (EVM) is defined in IEEE 802.15.4 as the root mean
square average amplitude of the error vector ~Ek between I/Q samples and the
corresponding optimal constellation points [19, Sec. 6.9.3].

4.2.2 Feature Extraction Overview

The features defined in the previous section either correspond to by-products or rely
on the end-product of successful receiver synchronization, i.e., the compensation of
discrepancies in amplitude, frequency, phase and time between the transmitter and the
receiver (cf. Section 2.2.2). The I/Q samples that are available on this SoC are taken
from the raw incoming signal (i.e., before the receiver synchronization). On the other
hand, the decoded, bit-level payload after hardware-accelerated receiver synchronization
discards the constellation diagram or further synchronization information. Therefore, the
raw data has to be processed again in software to obtain the features.

ORF uses a typical coherent demodulation receiver pipeline architecture for OQPSK,
mainly following [15] and using the Matlab Communications Toolbox implementation
[24] as a reference. Receiver synchronization with the I/Q sample data available on
the SoC is challenging because the synchronization header is not part of the recorded
samples and the amount of available I/Q samples is rather small. Therefore, some steps
of the receiver pipeline are adapted to account for the limited information and resources
available on the SoC.

An overview of the synchronization process is given in Figure 4.4. The individual pipeline
steps are described in detail in the remainder of this section, where Sk and S′k refer
to individual I/Q samples before and after each pipeline step, respectively. Figure 4.5
depicts the effects of the individual pipeline steps on the I/Q samples.

Normalization Matched Filter Frequency
Synchronization

Phase
Synchronization

Phase Ambiguity
Resolution

Time
Synchronization

raw I/Q samples

constellation diagram

features

Figure 4.4: Feature extraction based on a typical coherent-receiver pipeline. The CFO
feature is obtained from the frequency synchronization step, while all other
features are obtained from the time-synchronized I/Q symbols.
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(f) Phase Ambiguity Resolution

Figure 4.5: I/Q plots after different pipeline steps. For each step, the top plot shows
the original OQPSK-modulated signal, while the bottom plot corrects for the
half-symbol offset, effectively resulting in a QPSK constellation.
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A dual implementation approach is employed during development of ORF: Firstly, an
off-board version is implemented in Python using numpy [25] for fast development and
evaluation cycles. Secondly, the on-board code is written in C and makes extensive use
of the CMSIS-DSP Software Library which is part of the ARM® Cortex® Microcontroller
Software Interface Standard (CMSIS) and provides implementations of many common
compute processing functions, optimized for Cortex-M processor based devices such
as the SoC used for ORF [26]. The same algorithms are used in Python and C and
Section 5.2 will show empirically that they produce virtually identical results.

4.2.3 Normalization

A typical receiver pipeline starts with an Automatic Gain Control (AGC) block, which
dynamically adjusts the signal amplitude to a desired reference level [15, Ch. 9.5]. This
is necessary in general, since the signal amplitude changes over time due to multipath,
interference and noise effects.

It is not specified in the official documentation where exactly in the receiver pipeline
the I/Q samples are taken. However, it has been confirmed by Nordic Semiconductors2
that the incoming signal is sampled “at baseband after receive filters”, and that “AGC
is enabled during the payload section (i.e. one must expect that the gain may change
during the payload section)”.

ORF can therefore expect amplitude changes to be already compensated for in the ob-
tained I/Q samples. However, in order to facilitate amplitude comparison between frames
that are received with differing SNR values (and therefore different mean amplitudes),
the I/Q samples are in a first step normalized to have mean amplitude one by S′k = Sk

¯|S| .
Therefore, Figure 4.5b is barely a scaled version of Figure 4.5a.

As part of this pipeline step, the I/Q samples are also converted from int16_t as given
by the nRF radio peripheral to the IEEE 754 float32_t datatype for further processing.
Both operations can be implemented in place in a straightforward way and thus require
no extra memory.

4.2.4 Matched Filter

A filter is commonly used at the receiver which correlates the incoming in-phase and
quadrature samples (separately) with the known pulse shape p(t) used during modulation
at the transmitter (in the case of IEEE 802.15.4 a half-sine pulse as defined in Equa-
tion 2.5). This so-called matched filter achieves maximal signal-to-noise ratio (SNR) in
the presence of additive white noise [27], thereby improving the input data quality for the
receiver pipeline and consequently the synchronization quality. Correlation corresponds
to convolution of the conjugated time-reversed pulse shape p′(t) = p∗(−t). In discrete

2https://devzone.nordicsemi.com/f/nordic-q-a/99749/nrf52833---collecting-i-q-samples/426505
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time, the output of the matched filter is thus calculated individually for the in-phase and
quadrature components by S′ = p′ ∗ S, i.e. S′k = ∑SPS

i=0 p′i · Sk−i.

When implemented in a naive way, convolution cannot be performed in place because
of the data dependency of later samples on already-processed previous ones. However,
since the length of p′ (excluding zero-samples) matches the amount of recorded samples
per I/Q symbol (SPS), which is very small compared to the length of S, it is possible to
compute each S′k considering a copy of Sk, . . . , Sk−SPS . The buffer holding those copies
needs to be of length SPS and can be safely allocated on the stack.

4.2.5 Frequency Synchronization

The goal of the frequency synchronization step is to estimate and correct the carrier
frequency offset CFO between the oscillators in the transmitter and the receiver. As
detailed in the following, ORF implements the frequency offset detection described in
[28], combined with the frequency interpolation technique from [29] to achieve accurate
frequency estimation.

IEEE 802.15.4 2450 MHz PHY uses OQPSK with an I/Q symbol rate of 1 MHz per signal
component. The spectrum of such a signal obtained by a Fourier Transform is spread
between −1 MHz and 1 MHz as shown in Figure 4.6, making direct carrier frequency
estimation very difficult. To overcome that problem, the information-bearing OQPSK
signal S is squared (doubling the frequencies), which results in a single-tone signal on
the in-phase component of S2 due to the nature of OQPSK modulation.

If CFO = 0, the predominating frequency components of S2 are ±1 MHz. However, if
CFO 6= 0, the peaks in the spectrum are equally shifted to ±1 MHz+2·CFO. Estimating
CFO thus boils down to finding the peaks around ±1 MHz in the spectrum of S2. As
discussed before in Section 4.2.1, |CFO| < 200 kHz according to the standard. That
means it is sufficient to search for spectral peaks 2 · 400 kHz around ±1 MHz, respectively.
The bottom plot of Figure 4.6 shows the spectrum of S2, visualizing the search regions,
the recognized peaks and the estimated carrier offset.

The Discrete Fourier Transform (DFT) used in practical systems such as ORF operates
on time-discrete signals, like S, and produces a discrete spectrum, which is calculated
at frequencies that are multiples of the frequency resolution, or frequency bin size,
∆f = fs

NDFT
. fs denotes the sampling frequency of the time-discrete signal and NDFT

the amount of samples considered for the DFT. That means, all frequency components
between two integer multiples of ∆f are distributed over the surrounding two frequency
bins. With N = 3800 available samples and the sampling frequency of fs = 8 MHz, this
results in ∆f ≈ 1053 Hz on the original frequency scale of S.

Looking at the definition of ∆f above, it is apparent that there are two possibilities
to improve the frequency resolution: Either by decreasing the sampling rate fs or by
increasing the amount of samples NDFT . For the case of ORF with a limited maximum
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Figure 4.6: Absolute frequency spectrum of S and S2 obtained using 4096-FFT.

absolute sampling duration, the former would effectively also decrease NDFT (thereby
leaving ∆f unchanged) and the latter can only be achieved with artificially added zeros.
This so-called zero padding corresponds to an interpolation in the frequency domain
resulting in a better estimate of the maximum of single peaks, but no better distinction
between peaks close to each other.

Zero padding is used in ORF mainly in order to let NDFT be a power of two, which is
a requirement for Fast Fourier Transform (FFT) algorithms. Considering the amount
of actual samples N = 3800, memory constraints and the fact that CMSIS-DSP provides
optimized FFT implementations for signals of up to 4096 samples, NDFT = 4096 is
chosen for ORF. Since the spectrum is known to contain two single frequency peaks far
apart from each other, ORF can slightly benefit from the zero-padding interpolation,
giving ∆f ≈ 977 Hz.

To further improve the frequency resolution, frequency interpolation is performed as
follows: First, the time signal S2 is windowed (i.e., multiplied) with a Gaussian function,
which leads to spectral peaks very close to a Gaussian form (the Fourier transform
of a Gaussian function is another Gaussian function). Second, the spectral peak is
interpolated using Gaussian interpolation (i.e., fitting a Gaussian function to the peak).
In this combination, [29] shows that the frequency estimation error on idealized spectra
(without noise or interference) is 0.0087 % of the bin size. For ORF, this gives a theoretical
frequency resolution of ∆f < 0.1 Hz.

After identification and interpolation of the peaks both in the left (fleft) and the right
(fright) side of the spectrum, the carrier frequency offset (CFO) is calculated as CFO =
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fleft+fright
4 . The CFO is kept as one feature and the I/Q samples are jointly frequency-

corrected by S′k = Sk · e−i·2π·CFO·
k
fs .

The FFT function provided by CMSIS-DSP operates in place, but since the original I/Q
samples are still needed after the signal squaring, windowing and Fourier transformation,
an additional memory buffer holding 4096 complex values (4096 · 8 B = 32.768 kB) is
needed for those operations. In terms of constant data, the 3800 samples of a real-valued
Gaussian window (3800 · 4 B = 15.2 kB) need to be stored in ROM.

4.2.6 Phase Synchronization

Although the frequency synchronization step compensates for the carrier frequency offset
between transmitter and receiver, the carrier and thereby the I/Q samples at the receiver
can still be out of phase compared to the transmitter. This effect manifests itself in a
rotation of the constellation diagram around the origin [15, Sec. 5.3].

Traditionally, a phase lock loop (PLL) is used to dynamically track the phase of S and
to compensate each sample by the current phase error estimate during processing. Since
frequency corresponds to a constant phase change over time, the PLL is also able to
correct the potential residual frequency offset in the samples. Being a typical control
system feedback loop, a nonzero period of time is required to achieve phase lock, i.e., to
reduce the estimation error to zero. Approximate expressions for the acquisition time and
the tracking error are given in [15, Secs. C.1.5–C.1.6], showing that shorter acquisition
time implies larger tracking error, and vice-versa.

0 1000 2000 3000

samples

−40

−30

−20

−10

0

p
h

as
e

er
ro

r
[°]

(a) Phase error estimate over
time.

−1 0 1

I

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Q

−1 0 1

I

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Q

(b) Offset-compensated I/Q plot before and after the PLL.

Figure 4.7: Effect of a PLL-based phase synchronization approach.

Practical experiments with samples recorded on the SoC show that the acquisition time
is in the order of 2500 samples for a reasonably small tracking error. The first two thirds
of the samples are thus phase-corrected with wrong estimates, effectively decreasing the
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data quality. Figure 4.7 shows the effect of using a PLL for phase synchronization in
terms of the phase error estimate over time and the resulting I/Q plot.

To achieve better performance, a different, iterative approach for phase synchronization
is employed in ORF: In each step i, the I/Q samples are jointly rotated by an angle
i ·∆φ and the resulting I/Q plot shapes are compared to the expected one with zero
phase offset. The one that matches best is taken as the phase offset estimate φ̂. Since
OQPSK has an inherent phase-ambiguity of 90° (which will be accounted for in the next
pipeline step), the angle step size is defined as ∆φ = π

2·M , where M = 16 is the selected
number of steps for ORF. This approach assumes that the phase offset is constant for
the whole frame, i.e. that the remaining frequency error is near zero. Due to the high
frequency resolution achieved using interpolation and the short duration of the frame,
this assumption holds for ORF.
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Figure 4.8: Finding the phase offset by comparison to the expected X-shape. I/Q plots
for a subset of the 16 phase shift values tried and the amount of samples
outside the shape as a function of the phase shift values.

When (virtually) compensating the offset between the in-phase and quadrature compo-
nents of an OQPSK signal, the expected characteristic I/Q plot shape is identical to
the QPSK one, which resembles an X connecting the four ideal constellation points (cf.
Section 2.2.1). ORF tests for this shape by counting the amount of samples outside of the
shape with a given margin. In particular, all samples Sk with ||Sk,I |−|Sk+SPS/2,Q|| > 0.35
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are treated as outliers. Figure 4.8 shows I/Q plots for different rotation angles of the
example frame, together with a diagram showing the amount of outliers for different
rotation angles. φ̂ is taken as the minimum of that function, and the original I/Q samples
are jointly rotated with S′k = Sk · eiφ̂.

In theory, the phase synchronization operation can be implemented in place since it
involves no non-linearities. Nevertheless, in practice, to avoid rounding errors due
to the use of trigonometric functions (which are implemented using table lookup and
interpolation), the test rotations are only applied to copies of the original samples. It
is however sufficient to use a smaller amount NPS of the N I/Q samples to recognize
the shape, which results in the need for a memory buffer of NPS complex values. Since
NPS < NDFT and the spectral information from the previous step is no longer needed,
the same memory buffer can be reused for this step. NPS = 1500 is chosen for ORF,
which translates to 12 kB in terms of memory.

4.2.7 Phase Ambiguity Resolution

As mentioned in the last section, OQPSK modulation has an inherent phase ambiguity
of 90°. To resolve this ambiguity, a known sequence of I/Q symbols is correlated with
the samples twice, before and after rotation by 90°. The known I/Q symbols are usually
taken from the standardized first part of a frame. For IEEE 802.15.4, the synchronization
header (SHR) contains 5 fixed bytes which map to a fixed I/Q symbol (chip) sequence.
The SHR is not part of the recorded samples (cf. Section 4.1.2), but the decoded payload
is available on the SoC. ORF can thus use part of the payload to generate the expected
I/Q symbol sequence. In particular, the four most significant bits of the first payload byte
are picked to obtain a sequence of 16 I/Q symbols for correlation. Their transmission is
started 48 µs after the end of the synchronization header.

Instead of calculating the correlation over the whole signal, it is sufficient to consider
the correlation values corresponding to the sample number at which the I/Q symbol
sequence is expected to be found. Analysis of recorded data in Figure 4.9 shows that the
I/Q symbol sequence corresponding to the four most significant bits of the first payload
byte always starts between 118 and 120 samples (with very few outliers at 117 or 121
samples) after the recording started. Therefore, the correlation value is only calculated
for time offsets between 115 and 124 samples in the ORF implementation.

The actual sampling start on the SoC can be deduced from this average timing offset
of 119 samples, thereby answering the remaining open question from Section 4.1.2: 119
samples correspond to 14.875 µs at the selected sampling frequency of 8 MHz. This means
that the continuous sampling (after discarding the first 64 samples from the reference
period) starts 48 µs − 14.875 µs = 33.125 µs after the start of the physical header as
depicted in Figure 4.10.

Since IEEE 802.15.4 uses pseudo-random I/Q symbol sequences, the correct phase and
time offset will be clearly detectable as having the largest absolute correlation value. A
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Figure 4.9: Start of the four most significant bits in the first payload byte. Different
colors correspond to different transmitter devices.
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Figure 4.10: Exact start of continuous I/Q samples with respect to the received IEEE
802.15.4 frame.
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large negative correlation corresponds to an additional phase shift of 180°. Just as before,
the I/Q samples are jointly rotated by the detected phase offset φamb with S′k = Sk ·eiφamb .
Figure 4.11 shows the start of the sampled signal components together with the expected
chip sequence for the detected phase and time offset.
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Figure 4.11: Phase ambiguity resolution using correlation. The plot shows the start of the
phase-corrected signal S′ together with the expected I/Q symbol sequence.

In terms of memory consumption, the phase ambiguity resolution is again implemented
on a copy of the I/Q samples, but this time only NPAR = 10 + 16.5 · SPS samples are
needed (resulting in 1136 B). This is way smaller than NDFT , too, allowing to re-use the
same memory buffer again. In ROM, the complete chip map of IEEE 802.15.4 needs to
be stored. Using a naive implementation, this requires 16 · 32 = 512 B of ROM, but a
more memory-efficient implementation using bitarrays could bring this number down to
16 · 4 = 64 B.

4.2.8 Time Synchronization

After the received samples are corrected in terms of amplitude, frequency and phase,
the goal of this last step in the receiver pipeline is to find the optimal sampling instant
for each transmitted symbol. This corresponds to the point in time with the largest
amplitude per signal component. ORF uses an oversampling rate of eight samples per
I/Q symbol, which as a baseline gives eight samples to choose from. However, none of
these eight samples might capture the actual maximum amplitude per symbol, resulting
in the need of signal interpolation.

Time synchronization in ORF is realized as a PLL, following [15, Secs. 8.4, 8.6] using
the (decision-directed) zero-crossing method, a piecewise parabolic interpolator with
Farrow structure and coefficient α = 0.5, a modulo-1 counter interpolation control and a
proportional-plus integrator (PI) loop filter. This setup proved to work well in practice
for ORF and is thus not adapted further. Figures 4.12, 4.13 visualize the effect of the
time synchronization step on the example frame used for Figure 4.5 in terms of an I/Q
plot and time-plots of the two signal components.
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Figure 4.12: I/Q plot before and after the time synchronization step.
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Figure 4.13: Part of the original signal S together with the corresponding time-
synchronized and interpolated I/Q symbols S′.

35



The time-synchronization PLL implementation requires very little additional memory as
the I/Q samples are processed in-order one after another. The state information needed
for the interpolation and PI loop filters can by stored in less than 110 B and thus can be
safely allocated on the stack.

4.2.9 Extraction of Constellation-based Features

The I/Q plot obtained from the last receiver pipeline step resembles a standard QPSK
constellation diagram, with I/Q sample clouds instead of the theoretical four exact
constellation points. The constellation-based features defined in Section 4.2.1 are extracted
from the I/Q plot as detailed in the following.

First, the set of I/Q symbols Sk is split into four subsets Pi, i ∈ {1, 2, 3, 4} according to
the quadrant they fall into, attributing them to one of the four ideal constellation points
Pi. The center point P̂i of each constellation cloud Pi is estimated as the mean of all
samples belonging to that cloud:

P̂i = 1
|Pi|
·
∑
Sk∈Pi

Sk

The I/Q offset IQO is calculated as the mean of the constellation cloud centers P̂i:

IQO = 1
4 ·

4∑
i=1

P̂i

Since the I/Q phase imbalance has the effect of “skewing” the constellation diagram in
diagonal direction, the I/Q skew feature IQS is quantified by the difference in amplitude
between the two diagonals:

IQS = |P̂2|+ |P̂4|
2 − |P̂1|+ |P̂3|

2

The shape of the constellation clouds is captured by their extend in two directions, the
magnitude and the phase. Since the clouds in opposite quadrants are experimentally
found to have similar shape, they are averaged together. Let

mag(Pi) = {|Sk| : Sk ∈ Pi}
phase(Pi) = {∠Sk : Sk ∈ Pi}

diff(P) = maxP −minP

then the four CCS features are defined as:
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CCSM13 = 1
2 (diff(mag(P1)) + diff(mag(P3)))

CCSM24 = 1
2 (diff(mag(P2)) + diff(mag(P4)))

CCSP13 = 1
2 (diff(phase(P1)) + diff(phase(P3)))

CCSP24 = 1
2 (diff(phase(P2)) + diff(phase(P4)))

The Error-Vector Magnitude is defined in IEEE 802.15.4 as the root mean square
amplitude of the error vectors of the individual symbols. To abstract away from the I/Q
offset and I/Q phase imbalance which are already captured in separate features, the error
vector ~Ek = Sk− P̂i is calculated with respect to the constellation cloud center P̂i instead
of the ideal constellation point Pi, and the average magnitude of the constellation cloud
centers P̂i.

EVM =

√√√√ 1
N

∑N
k=1 |Ek|2

1
4
∑4
i=1 |P̂i|

Figure 4.14 visualizes the constellation-based features on the constellation diagram
obtained for the frame used as an example throughout this section.
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Figure 4.14: I/Q plot of time-synchronized samples with visualizations of all constellation-
based features.
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4.3 Stage 3: Fingerprint Classifier

As for any radiometric fingerprinting system, the third and last stage of ORF corresponds
to classifying the extracted features in order to identify the transmitter devices. Most
commonly, this part is realized using an ML model suitable for classification (cf. Sec-
tion 2.1). It is not a primary goal of this work to optimize the classifier performance,
but rather to show the general feasibility of on-board classification. Therefore, only a
single ML classification model is considered for ORF: A Random Forest classifier. It is
an ensemble learning method which combines the output of several decision trees, which
are independently trained on a random subset of the features and the training data, a
process referred to as bootstrap aggregating, or bagging for short. In that way, they avoid
overfitting to the training set and generally outperform simple decision trees. [30]

For all experiments, the input of the classifier is preprocessed in two steps: First, outliers
are removed for each feature and transmitter device individually, where samples with
absolute z-scores (which are defined as the difference to the feature mean value in
multiples of the feature standard deviation) above three are considered to be outliers. In
a second step, min-max feature scaling is used to bring all values per feature into the
range [0, 1].

The Random Forest classifier is trained in Python using scikit-learn [31] and converted
to C99 code using emlearn [32]. The limited ROM space available on the SoC restricts
the model complexity, which depends on a variety of model hyperparameters such as
the number of decision trees that form the Random Forest. Lower model complexity
means less code, but also potentially a loss in performance. Section 5.4 therefore jointly
investigates the classifier performance in terms of accuracy together with the model
size for different combinations of hyperparameters, finally leading to a decision for the
hyperparameters used in ORF.
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5 Evaluation

The performance of the complete ORF system implementation can be quantified using
its classification outcome, i.e., the ratio of frames that are attributed to the correct
transmitter. This final metric however depends on a multitude of factors, which are
discussed one after another in the following sections:

• Evaluation Dataset. The dataset used for evaluation purposes has a significant
impact on the evaluation outcome. First of all, the probability that two different
devices have a similar fingerprint due to similar hardware characteristics, effectively
hindering distinction between those devices, increases according to the number of
considered transmitter devices. Especially devices of the same type are more likely
to expose similar characteristics due to their common hardware design. In turn, it
follows that increasing the device type variety within the dataset can be expected
to improve the evaluation outcome. Apart from that, signal distortions introduced
by the wireless transmission channel can severely impair correct classification [8].
The experimental setup realized to obtain the data used for evaluation purposes is
explained in detail in Section 5.1.

• Raw Data Quality. Previous work in radiometric fingerprinting relies on expensive
and specialized hardware for I/Q sampling (cf. Section 2.1). In contrast, ORF
obtains I/Q samples directly on a COTS device. Since it is difficult to assess the
I/Q sample quality directly due to the automatically applied gain control, the data
quality is only evaluated indirectly using the overall system performance.

• Implementation Details. The concrete implementation of each step naturally
influences the performance of the following steps in the fingerprint-extraction and
classification pipeline. Bad performance of an early step in the pipeline is thus
magnified in the final outcome. On the other hand, it is hard and time-consuming
to evaluate the impact of a specific step on the final classification when working
with real hardware. In order to allow for faster evaluation cycles without resorting
to the hardware device, the Python implementation has been used throughout the
development. Section 5.2 shows that there is no significant difference between the
ORF pipeline implementations in Python and C.

• Feature Engineering. The system performance also largely depends on the
selected features. If the features fail to capture the individual transmitter hardware
characteristics well, the classification deteriorates quickly. An intuitive measure
of feature quality and significance is their variation among and between classes:
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A “good” feature has little variation between frames of a single transmitter, but
differs significantly from transmitter to transmitter. Section 5.3 investigates the
quality of the features defined for ORF.

• Classifier Training Hyperparameters. Same as for all machine learning models,
the performance of the Random Forest classifier used in ORF highly depends on
so-called hyperparameters. This includes model parameters such as the number of
subtrees and training parameters such as the size of the training set. On the other
hand, those parameters also influence the resulting classifier model size, which is
another critical factor for on-board deployment. Section 5.4 thus presents a joint
evaluation of the classifier performance and ROM memory usage.

Although not directly connected to the classification accuracy, another important factor for
deployment on embedded systems is investigated in Section 5.5: the resource consumption
of the ORF implementation in terms of memory, time and energy. Section 5.6 concludes
the evaluation with a brief look into the stability of the features over time.

5.1 Experimental Setup

The data used to train and evaluate the ORF classifier is collected under ideal, fixed
conditions in an anechoic chamber with direct line-of-sight transmission in order to avoid
multipath, interference, Doppler and noise effects. It has been shown in [8] that it is
possible to adapt the classifier to real-world scenarios by training it on an artificially
augmented dataset simulating those wireless channel effects based on the ideal samples.

32 different devices of four different types are used to transmit 802.15.4 PHY frames
depicted in Figure 4.2 with 12B of random payload, followed by 2B of CRC, at a rate
of 50 frames/s. One nRF52833-DK board is placed at a distance of 1.3m and used as a
receiver, capturing the raw I/Q samples of 1000 frames per transmitter at a sampling
rate of 8 MHz. Table 5.1 gives an overview of the used devices.

Table 5.1: Devices used as receiver (Rx) and transmitter (Tx) during data collection,
together with their respective tag used throughout the evaluation. The age of
the devices can be estimated from their approximate year of purchase.

Device Type Tx Rx Amount Tag Year (approx.)
nRF52833 DK [21], [33] X 1 2023
nRF52840 DK [34], [35] X 8 dk* 2020
nRF52840 Dongle [35], [36] X 8 dongle* 2020
Thunderboard Sense 2 [37] X 8 gecko* 2019
Tmote Sky [38] X 8 sky* 2009
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(a) Each transmitter (right) is placed 1.3m apart
from the receiver (left) in an anechoic chamber.

(b) Transmitter devices included in the dataset.

Figure 5.1: Experimental setup for the data collection.

5.2 Off-Board and On-Board Implementation

As mentioned previously in Section 4.2.2, two implementations of the whole coherent-
receiver, feature-extraction and classifier pipeline have been developed for ORF: A Python
version for fast off-board evaluation on an ordinary x86-64 Linux PC, as well as a C version
for on-board deployment on the SoC. Both versions implement the same algorithms and
use single-precision floating point storage and computation compliant with the IEEE 754
standard1.

However, the trigonometric functions used in several steps of the pipeline are implemented
differently on the two systems: On one side, CPython and thereby numpy uses the highly-
optimized, native C math library for those functions. In contrast, the on-board C
implementation uses the functions provided by CMSIS-DSP, which are implemented as a
combination of table lookup using 512 values and linear interpolation [26]. The precision
of the outcome is thus expected to be lower on the SoC than off-board.

This section shows that the overall results obtained using the Python implementation are
nevertheless very similar to the ones obtained on-board, justifying the usage of Python
for evaluation purposes. To that end, the result of individual pipeline steps are first
compared for a single frame. Then, the outcome of the whole pipeline is compared over
the whole dataset.

In any case, the results reported in the remainder of the evaluation are obtained from
the features extracted using the on-board C pipeline.

1using np.float32 in Python and float32_t/float in C
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5.2.1 Individual Pipeline Steps

For this part, a single frame out of the dataset is processed both off board and on board.
The individual sample values after each pipeline step are compared and a relative error
value is calculated as

εk =
∣∣∣∣∣Soff-board

k − Son-board
k

Soff-board
k

∣∣∣∣∣ .

Table 5.2: Average error of I/Q samples obtained via on-board C processing of a single
example frame compared to the off-board Python pipeline.

ε̄k [%]
Normalization 0.0001
Matched Filter 0.0001
Frequency Synchronization 0.2496
Phase Synchronization 0.2496
Phase Ambiguity Resolution 0.2496
Time Synchronization 0.1573

Table 5.2 shows the average error ε̄k after each pipeline step. Overall, the average
difference between samples obtained using the off-board and on-board pipeline is very low.
The largest difference is introduced at the frequency synchronization step, because even
a slightly different carrier frequency offset estimate leads to an increasing difference in
frequency-corrected sample values over the length of the frame. The remaining pipeline
steps introduce no further difference in samples, and the overall error is smaller after the
time synchronization step because the number of samples is lower.

5.2.2 Whole Feature Extraction Pipeline

Instead of looking at the I/Q sample values after individual pipeline steps for a single
frame, the whole dataset is processed both off board and on board, up to and including
the feature extraction step. For each frame and feature f , the difference is quantified
as

εf =
∣∣∣∣∣foff-board − fon-boardfoff-board

∣∣∣∣∣ .
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Table 5.3: Average error of features obtained via on-board C processing of the whole
dataset compared to the off-board Python pipeline.

Feature ε̄f [%]
Carrier Frequency Offset CFO 0.0006
I/Q offset IQO-I 9.7894
I/Q offset IQO-Q 25.0879
I/Q skew IQS 0.4447
Constellation Cloud Shape CCSM13 0.6764
Constellation Cloud Shape CCSM24 0.6500
Constellation Cloud Shape CCSP13 0.6287
Constellation Cloud Shape CCSP24 0.8943
Error-Vector Magnitude EVM 0.8805

Table 5.3 shows εf for each feature, averaged over all frames available in the dataset. As
expected based on the previous experiment which showed that the time-synchronized
samples only differ marginally between the on-board and off-board pipeline implemen-
tation, most of the constellation-based features differ in less than 1 %. Only the IQO
features present higher differences, which is mainly a mathematical effect of them having
values very close to zero for most transmitters (cf. Figure 5.2 in the next section). The
relative error value is thereby amplified but not of importance in practice.

5.3 Feature Quality

A decisive factor for the performance of any classifier is the selection of features used as
input. This part investigates the quality of the features defined for ORF in Section 4.2.1
using the dataset described in Section 5.1.

The process of selecting optimal features is considered to be quite hard in general. A
multitude of metrics has been proposed for statistical and empirical evaluation of feature
quality and importance [39], [40]. However, since it is not the main goal of ORF to
optimize for the best possible classifier performance, a relatively straightforward approach
to feature selection is used, mainly based on visual and statistical assessment of feature
variance.

“Good” features have small variance among data of a single class, but significant variance
between different classes. A mathematical method to capture this property is the one-way
analysis of variance (one-way ANOVA), which performs a statistical test whether two or
more class means are equal [41]. The resulting f-value is higher for larger differences in
class means.
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Figure 5.2: Variance of the CFO, EVM, IQO and IQS feature over the dataset. The boxes
extend from Q1 to Q3, while the whiskers indicate the 1.5 IQR. Outliers are
omitted.

44



0.6

0.8

1.0

1.2

1.4

C
C
S
M

1
3

(f
=

62
85

.3
)

0.5

1.0

1.5

2.0

C
C
S
M

2
4

(f
=

58
66

.8
)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
C
S
P

1
3

(f
=

82
69

.2
)

dk
01

dk
03

dk
04

dk
05

dk
08

dk
15

dk
16

dk
17

do
ng

le
01

do
ng

le
02

do
ng

le
03

do
ng

le
04

do
ng

le
05

do
ng

le
06

do
ng

le
07

do
ng

le
08

ge
ck

o0
1

ge
ck

o0
2

ge
ck

o0
3

ge
ck

o0
4

ge
ck

o0
5

ge
ck

o0
6

ge
ck

o0
7

ge
ck

o1
0

sk
y0

1

sk
y0

2

sk
y0

3

sk
y0

4

sk
y0

5

sk
y0

6

sk
y0

7

sk
y0

8
dk

01
dk

03
dk

04
dk

05
dk

08
dk

15
dk

16
dk

17

do
ng

le
01

do
ng

le
02

do
ng

le
03

do
ng

le
04

do
ng

le
05

do
ng

le
06

do
ng

le
07

do
ng

le
08

ge
ck

o0
1

ge
ck

o0
2

ge
ck

o0
3

ge
ck

o0
4

ge
ck

o0
5

ge
ck

o0
6

ge
ck

o0
7

ge
ck

o1
0

sk
y0

1

sk
y0

2

sk
y0

3

sk
y0

4

sk
y0

5

sk
y0

6

sk
y0

7

sk
y0

8
dk

01
dk

03
dk

04
dk

05
dk

08
dk

15
dk

16
dk

17

do
ng

le
01

do
ng

le
02

do
ng

le
03

do
ng

le
04

do
ng

le
05

do
ng

le
06

do
ng

le
07

do
ng

le
08

ge
ck

o0
1

ge
ck

o0
2

ge
ck

o0
3

ge
ck

o0
4

ge
ck

o0
5

ge
ck

o0
6

ge
ck

o0
7

ge
ck

o1
0

sk
y0

1

sk
y0

2

sk
y0

3

sk
y0

4

sk
y0

5

sk
y0

6

sk
y0

7

sk
y0

8
dk

01
dk

03
dk

04
dk

05
dk

08
dk

15
dk

16
dk

17

do
ng

le
01

do
ng

le
02

do
ng

le
03

do
ng

le
04

do
ng

le
05

do
ng

le
06

do
ng

le
07

do
ng

le
08

ge
ck

o0
1

ge
ck

o0
2

ge
ck

o0
3

ge
ck

o0
4

ge
ck

o0
5

ge
ck

o0
6

ge
ck

o0
7

ge
ck

o1
0

sk
y0

1

sk
y0

2

sk
y0

3

sk
y0

4

sk
y0

5

sk
y0

6

sk
y0

7

sk
y0

8

Transmitter

0.25

0.50

0.75

1.00

1.25

1.50

C
C
S
P

2
4

(f
=

52
82

.3
)

Figure 5.3: Variance of the CCS features over the dataset. The boxes extend from Q1 to
Q3, while the whiskers indicate the 1.5 IQR. Outliers are omitted.
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For ORF, classes refer to the individual transmitter devices. Figures 5.2, 5.3 show box
plots for the different features together with their f-values, analyzed over the whole
dataset.

First of all, several features differ quite a lot between devices of different type, and, on
the other hand, fall into a similar range for devices of the same type. This matches the
expectation that the hardware design contributes to the transmitter-specific characteristics.
It also explains why device type identification is an easier task than individual device
classification as shown in Section 5.4.

Out of all features, it is apparent that the Carrier Frequency Offset is a very valuable
one, since it is almost constant for all frames from a given transmitter device and, at the
same time, differs a lot between different transmitters.

In general, the Tmote Sky devices present a very large variance for all constellation-
based features. A possible explanation for their less constant behavior is their age: The
hardware design and manufacturing quality has presumably improved during the 10
years difference in age. Also, hardware aging effects may manifest themselves in unstable
characteristics.

5.4 Classification Performance

This part investigates the performance of the final step in the ORF pipeline, the Random
Forest classifier. As for all ML algorithms, apart from the quality of the input data, the
final performance also heavily depends on a set of hyperparameters used during model
training. Model and training set size in general tend to correlate with the performance of
an ML model and the model size of a Random Forest classifier increases with the number
of decision subtrees and the training set size (if no maximum depth per decision tree is
specified).

To find a good compromise between classifier accuracy and memory usage, a number of
Random Forest classifier models are trained with a varying number of subtrees Ntrees and
a varying training set size. The training sets for this experiment are balanced and contain
Ntrain samples per transmitter device. The same test set is used for all configurations.
Other hyperparameters affecting the performance of the classifier are left unchanged.
This experiment is meant to give a feeling of the potential classifier performance, and
does not aim to find the absolutely optimal parameters for small model size and high
accuracy.

Figure 5.4 shows the memory footprint of the on-board classifier for different config-
urations, compared to the respective average and worst-case precision obtained using
those configurations (the average and worst-case recall values are very similar to those
reported values for all the experiments). As expected, the model size in ROM correlates
roughly linearly both with the number of subtrees and the number of training samples,
and the average and worst-case precision tend to improve with higher numbers of the
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hyperparameters, too. However, while the number of subtrees has a high impact on the
model size, the performance improvements are relatively small, especially for a higher
number of training samples. At the same time, the average precision seems to converge
to a maximum around 93 % with larger training sets, suggesting that the input data
quality, i.e., the considered features, impose an upper bound on the performance.

To gain better insight into the classifier performance for individual devices, two different
configurations are taken as examples and analyzed in more detail:

• Ntrees = 40, Ntrain = 20, which achieves an average precision of over 90 % while
occupying only slightly more than 100 kB of ROM

• Ntrees = 20, Ntrain = 160, which results in an improvement of 1.65 % (4.11 %) in
average (worst-case) precision, while roughly doubling the memory footprint.

The confusion matrices of the two models in Figure 5.5 are normalized to the true values
(rows) and show that, in both cases, most transmitters are correctly classified to 100 %.
Only some device pairs such as dongle04 and dongle05 with similar fingerprints (cf.
Figure 5.2) are misclassified among each other by both models. However, the percentage
of misclassification for these device pairs decreases with a larger model size.

Excluding dongle02, dongle04 and gecko02 (being one out of two similar devices,
respectively) from the dataset results in more than 99 % average precision and recall
over the reduced dataset. This suggests that the classification is very accurate as long as
all considered transmitters have sufficiently distinct radiometric fingerprints. Table 5.4
compares the classification performance for the two selected configurations according to
the metrics defined in Section 2.4, before and after excluding the three devices.

Table 5.4: ORF system performance in terms of classifier evaluation metrics for the two
example configurations. The values in parenthesis are obtained on a reduced
dataset where dongle02, dongle04 and gecko02 are omitted.

Ntrees = 40, Ntrain = 20 [%] Ntrees = 20, Ntrain = 160 [%]
precisionmacro 90.9244 (97.8945) 92.6734 (99.0599)
recallmacro 90.9392 (97.8692) 92.6893 (99.0564)
accuracy 90.9499 (97.8718) 92.7005 (99.0567)
precisionwc 53.5789 (86.9776) 57.6835 (92.7294)
recallwc 49.7886 (82.3654) 54.2184 (92.4411)

As expected due to the variance in features among different device types, both models
never misclassify a transmitter as another device type. That means that ORF achieves
correct classification in 100 % of the cases if only the device type is of interest.

Random Forest classifier models have the property that the importance of individual
features for the classification can be conveniently deduced from the subtrees. Figure 5.6
shows the reported feature importance for the two example configurations. As expected
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Figure 5.5: Confusion matrices for classifiers trained for the two example configurations.
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from the feature analysis in Section 5.3, the CFO feature is by far the most important
one throughout all models, while the remaining features contribute roughly by the same
amount.
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Figure 5.6: Relative feature importance for Random Forest classifiers trained for the two
example configurations.

5.5 Resource Consumption

As for any embedded system with hardware constraints, the resource requirements of
ORF in terms of memory, energy and execution time are important to consider. The
following two subsections investigate this resource consumption for the configuration that
is also used throughout the rest of the evaluation, with an I/Q sampling duration of
480 µs corresponding to 15 B of an IEEE 802.15.4 frame or roughly 3800 I/Q samples.
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5.5.1 Memory Usage

ORF is implemented with memory constraints in mind, but is not majorly optimized for
minimal memory consumption.

The selected hardware platform provides 512 kB of ROM (for code and static data) and
128 kB of RAM memory space. Table 5.5 gives a comprehensive overview of the space
in memory occupied by each step in the ORF sampling, receiver and feature-extraction
pipeline. The numbers for RAM memory consumption are taken from the discussion
in Section 4.2. The ROM space needed per pipeline step is obtained by selectively
enabling only one pipeline step at a time and comparing the binary size to a baseline
compilation with the entire pipeline disabled. The exact numbers depend on the concrete
implementation and should not be taken too seriously. Rather, they are meant to show
the order of magnitude of the memory requirement for each pipeline step.

Table 5.5: Memory footprint of (individual parts of) the ORF on-board C implementation.
The reported total numbers do not correspond to the simple sum of the entries.

ROM [B] RAM [B]
I/Q sampling 682 15200
Conversion to float 672 30400
Normalization 1941 0
Matched filter 1704 64
Frequency synchronization 66617 32768
Phase synchronization 4352 12000
Phase ambiguity resolution 4904 1136
Time synchronization 2300 0
Feature extraction 3529 0
Total 106465 63168

The reported total ROM space does not match the sum of the individual pipeline steps
for two reasons: First, several pipeline steps make use of the same library functions
which only need to be included once in the final binary, decreasing the total binary size.
Second, the Zephyr build system unconditionally adds code for bootup and other system
functions, in turn increasing the binary size.

The frequency synchronization step alone occupies the most amount of ROM, since it
uses a large amount of static data for the Gaussian window and during FFT computation.
All other pipeline steps have a negligible ROM memory usage below 5 kB each.

Since the memory content of previous pipeline steps, apart from the I/Q sample buffer
itself, is not needed in subsequent ones, the total RAM usage can be estimated as the
sum of the I/Q sample buffer of 30.4 kB and the maximum RAM usage of the pipeline,
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32.768 kB; resulting in 63.168 kB. ORF itself thus occupies less than half of the available
space in RAM, allowing for real-world deployments alongside other device functionality.

In terms of ROM, the memory usage of the ORF pipeline up to the classification step
amounts to a bit more than 100 kB. The classifier can thus at most occupy 400 kB of
additional ROM. Out of the different classifier configurations discussed in Section 5.4,
Ntrees = 20, Ntrain = 160 with 210.37 kB is selected for all remaining experiments, leaving
enough free ROM space for combination with other device functionality.

5.5.2 Energy and Time

Two small benchmarking experiments are used to investigate the delay and energy
consumption of a single classification: First, the delay and energy is investigated for the
individual steps of the ORF pipeline, after frame reception and I/Q sampling. Second,
the energy consumption overhead incured by I/Q sampling during frame reception is
investigated.

For the first experiment, one frame out of the dataset is processed 100 times on board,
marking the start of the different pipeline steps using a pulse on a GPIO pin. The GPIO
output and current is sampled at 10 kHz (∆T = 0.1 ms) using the nRF Power Profiler
Kit II in Source Meter mode with a constant voltage supply of U = 3 V [42].

Figure 5.7a shows the current measurements I(t), together with the GPIO pulses, for a
single ORF pipeline run as an example. The current measurements are transformed to
energy consumption, attributed to the individual pipeline steps and averaged over the
100 measurements. Table 5.6 summarizes the average energy consumption and delay of
each pipeline step after the I/Q sampling.

Table 5.6: Delay and energy consumption per pipeline step, averaged over 100 measure-
ments.

Delay [ms] Energy [uJ]
Conversion to float32_t 5.1 51.1
Normalization 43 404.9
Matched Filter 104.2 1030.3
Frequency Synchronization 324.1 3142.7
Phase Synchronization 196.7 1908.5
Phase Ambiguity Resolution 13 126.8
Time Synchronization 483.2 5003.7
Feature Extraction 23.4 227.3
Classifier 0.4 2.7

Total 1193 11898.2
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The total delay for processing a single frame with ORF is 1.2 s, of which the most time is
spent during the time synchronization step. This can be explained by the fact that this
is the only step where the samples need to be processed one after another. The second
most time-consuming step is the frequency synchronization where a computationally
demanding 4096-FFT is calculated. The remaining steps of the receiver synchronization
pipeline together make up for most of the total time consumption. In contrast, the final
classification step takes barely 370 µs.
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Figure 5.7: Current measurements for different parts of the ORF pipeline.

Since the average current drain is between 3 and 3.5 mA throughout all the pipeline steps,
the energy consumption calculated as E = ∑

t I(t) · U ·∆T is roughly proportional to
the processing delay.

The second experiment investigates the energy consumption overhead caused by I/Q
sampling during frame reception as follows: The current drain of the receiver is sampled
at 100 kHz during the reception of 100 frames, with and without I/Q sampling enabled.
The duration of the I/Q sampling is marked by a GPIO pulse between the ADDRESS and
END event (cf. Section 4.1.2). Figure 5.7b shows the measurements for two example
frames with and without I/Q sampling, respectively. The GPIO pulse length of 480 µs
exactly matches the on-air transmission time for the PHY header and payload part of
the frame. It can be seen that in both cases there is no big difference in current drain
between the time during which the radio is actively listening on the channel (left of the
GPIO pulse) and the actual frame reception period. As soon as the radio is disabled
and the microprocessor goes into idle mode (right of the GPIO pulse), the current drain
drops significantly.

However, when considering only the frame reception, the current drain appears to be
slightly higher when I/Q sampling is performed. Averaging over the 100 received frames,
this difference can be confirmed and quantified: The average energy consumption for
a single frame reception without I/Q sampling is 9.9131 mJ. When I/Q sampling is
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performed, the average energy consumption goes up to 10.3194 mJ, indicating that the
I/Q sampling itself (including storing the samples to RAM) consumes 406.3 µJ for the
selected frame length.

5.6 Feature Stability

An interesting aspect of features capturing the radiometric fingerprint of a transmitter is
their stability over time: How long does it take for a fingerprint to change drastically
enough to deteriorate the classifier performance?

All previous evaluation findings are based on the dataset acquired using the experimental
setup detailed in Section 5.1, where all 1000 frames per transmitter are captured back-
to-back. However, a second data collection has been realized at a time difference of
roughly two months with a subset of the used transmitter devices (only dk* and dongle*
nRF52840 devices). Because only two device types are considered for this experiment and
there are multiple dongle* devices with similar radiometric fingerprints (cf. Section 5.3),
the classifier performance metrics differ from the results obtained over the whole dataset
and reported in Section 5.4.

Figure 5.8 and Table 5.7 show the classification performance when training the classifier
using the old dataset Dold and testing with frames from Dnew. The macro precision
and recall as well as the accuracy degrade slightly from 89 % to around 82 %, mainly
due to some pair of devices of the same type (dongle*) being misclassified. This is also
reflected by the worst-case metrics which drop significantly from around 57 % to 32 %
and even 4 %. The misclassification already present on Dold due to very similar features
is magnified when testing over Dnew with slightly changed feature values.

On the other hand, the classification performance is stable for devices that are already
reliably classified on Dold, suggesting that the ORF classifier is robust over time when
the features for individual devices are sufficiently distinct. Further research is needed to
obtain a better understanding of the feature stability over time.

Table 5.7: ORF classifier performance when trained with frames of Dold and tested with
frames of Dold and Dnew.

Dtest ⊆ Dold [%] Dtest = Dnew [%]
precisionmacro 89.6747 83.0400
recallmacro 89.6655 82.5326
accuracy 89.6096 82.5401
precisionwc 58.4816 31.432
recallwc 56.6832 4.5596
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Figure 5.8: Confusion matrices obtained with different datasets on a classifier trained
with frames of one of them.
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6 Conclusions and Future Work

6.1 Conclusions

ORF is the first on-board radiometric fingerprinting system that can be deployed on
COTS devices in a distributed network. It is realized by taking advantage of the I/Q
sampling functionality available on the nRF52833 SoC. Although originally designed for
BLE DFE, ORF shows that I/Q sampling on this SoC can be used to enable capturing
other parts of frames with lengths of up to 500 µs, even using a different physical-layer
protocol. The proof-of-concept implementation of ORF processes and classifies frames
complying with the IEEE 802.15.4 2450 MHz PHY protocol and achieves an average
accuracy of 92.7 % on a challenging dataset with 32 devices of four different types. One
single classification decision takes roughly one second and consumes around 11.8 mJ of
energy. The memory footprint is as low as 50 % of the available RAM and less than 75 %
of the available ROM.

6.2 Future Work

By showing that on-board I/Q sampling is feasible with sufficient quality for a radiometric
fingerprinting system, ORF opens the door for a multitude of interesting research
directions:

First of all, the current implementation of ORF certainly leaves room for further improve-
ment and optimization in terms of memory consumption, pipeline delay and classification
performance. Methods for achieving higher accuracy could be: re-iterated feature en-
gineering, i.e., defining and extracting better features; more careful feature selection;
classifier hyperparameter optimization; or using a different classification algorithm al-
together. Apart from that, on-board radiometric fingerprinting could also be explored
for other physical-layer protocols. While IoT deployments are often built on IEEE
802.15.4-based protocols, BLE is another promising candidate for on-board radiometric
fingerprinting [14].

The dataset used for evaluation purposes in this work has been captured under ideal
conditions, largely ignoring wireless propagation effects such as multipath and noise.
Combining the ORF approach with previous work on increased robustness to channel
distortions such as [8] is expected to facilitate application to real-world scenarios. Another
aspect which has only been briefly evaluated for ORF is the stability of features and
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thereby of the classification as time progresses. Further investigation in this direction
would help to assess the feasibility of real-world deployments.

Last but not least, having access to raw I/Q samples potentially enables applications
other than radiometric fingerprinting which rely on on-board I/Q sampling.
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